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We investigate the differences between scale-free recursive nets constructed by a synchronous, deterministic
updating rule �e.g., Apollonian nets�, versus an asynchronous, random sequential updating rule �e.g., random
Apollonian nets�. We show that the dramatic discrepancies observed recently for the degree exponent in these
two cases result from a biased choice of the units to be updated sequentially in the asynchronous version.
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Stochastic scale-free graphs have been found in a host of
natural and man made phenomena �the internet and the
World Wide Web, networks of flight connections, of social
contact, of predator prey, of metabolic reactions, etc.� and
have attracted much recent attention �1–6�. In this context,
deterministic scale-free graphs have been very useful as ex-
actly solvable models of the stochastic scale-free nets en-
countered in everyday life �7–11�. Most deterministic scale-
free nets are recursive: they are constructed by repeated
iteration of a fixed set of rules. It is, indeed, their recursive
character that makes them particularly amenable to analysis.

Recently, studies of random variations of deterministic
nets have yielded interesting results. Consider, for example,
the deterministic Apollonian net. Its construction begins with
three interconnected nodes �a complete graph of order 3, K3�
and at each iteration a new node is connected to the vertices
of every existing 3-clique �a K3 subset�, omitting those
3-cliques that had already been updated in previous itera-
tions. In the random version the 3-cliques to be updated are
selected at random, one at a time. In both cases there results
a scale-free graph, but the deterministic net has degree expo-
nent �=1+ln 3/ ln 2 �9,10,12,13�, as opposed to �=3 of the
random construct �14,15�. Similar discrepancies are observed
for the deterministic network of Dorogovtsev, Goltsev, and
Mendes �7� �where at each iteration a node is connected to
the endpoints of each existing link� versus the random ver-
sion �nodes are connected to the endpoints of randomly se-
lected links, one at a time�, as well as for other types of
recursive graphs �16�. Such dramatic differences between
synchronous �or parallel� versus asynchronous �or random
sequential� updating are surprising. Barring accidental sym-
metries, in dynamical lattice models and interacting particle
systems the two kinds of updating usually yield the same
kind of behavior and critical exponents �17�.

In this paper we argue that the reason behind the dramatic
differences between synchronous and asynchronous updating

stem from a biased choice of the units to be updated in the
sequential constructions. We focus on a particularly simple
scale-free tree whose deterministic construction involves
connecting new nodes to the endpoints of each of its links.
We then consider two methods of sequential updating that
differ from each other only in the selection rule of the links
to be updated. The degree exponents obtained in these two
ways differ from each other �as well as from that of the
deterministic tree�, demonstrating our point. A third method
of asynchronous updating is presented, that avoids the pitfall
of biased selection and yields the same degree exponent as
for synchronous updating. We briefly explore the differences
between random and deterministic constructs even when the
degree exponents obtained in the two methods agree with
one another.

I. SYNCHRONOUS UPDATING

Consider the deterministic tree of Fig. 1�a�, obtained by
the following procedure �18�: Starting from K2 at generation
n=0, we construct successive generations by attaching nodes
of degree one to the endpoints of each existing link �Fig.
1�b��. The tree that emerges in generation n has two hubs
�the nodes of highest degree� of degree 2n. An alternative
way for constructing the tree consists of doubling the degree
of each existing node, from k to 2k, by attaching to it k
single-degree nodes �Fig. 1�c��. Yet a third method, which
highlights the self-similarity of the tree, consists of produc-
ing three replicas of generation n and joining them at the
hubs �Fig. 1�d��.

It is clear that all nodes have degrees that are powers of 2.
Let Nn�m� be the number of nodes of degree 2m in generation
n. Let Nn=�mNn�m� be the total number of nodes �the order�
in generation n. Let Mn be the number of links �the size� in
generation n. We have,

Mn = 3Mn−1, M0 = 1, �1�

�seen most easily by the first method of construction�, from
which follows that
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Mn = 3n. �2�

Since the graph is a tree,

Nn = Mn + 1 = 3n + 1. �3�

Also,

Nn�m� = Nn−1�m − 1� + 2 � 3n−1�m,0, �4�

leading to

Nn�m� = �2 � 3n−m−1, m � n ,

2, m = n ,

0, m � n .
� �5�

This corresponds to a scale-free degree distribution of degree
exponent �=1+ln 3/ ln 2.

II. ASYNCHRONOUS UPDATING

Let us now explore the consequences of asynchronous, or
random sequential updating, and how it differs from syn-
chronous updating. Based on the first method of construction
�Fig. 1�b��, at each time step t we choose a link, randomly,
and connect a new node to each of its endpoints. We intend
to show that the differences between synchronous and se-
quential updating arise because of biases in the selection rule
of the link to be updated. To this end we consider the fol-
lowing two rules: �a� Select one of the M�t� links in the net,
randomly, with equal probability, or �b� select a node �among
the N�t� nodes of the net�, randomly, then select one of its
neighbors, at random, and pick the link that connects the two

nodes. A detailed analysis of these two rules and how they
differ in the selection of specific links is given in Appendix
A.

Consider how the degree of node i, ki�t�, changes with
time, by method �a�. Since each of the ki links leading to
node i is selected with probability 1 /M�t�, the probability
that ki→ki+1 in the next time step is ki�t� /M�t�. At each
time step we add two links to the tree, so M�t�=2t−1 �we
begin with a single link at time step t=1�. Hence, in the long
time asymptotic limit changes in ki are given by

dki

dt
=

ki

2t
. �6�

The initial condition for this equation is ki�ti�=1, that is, we
assume that the node was introduced to the tree at time ti as
a node of degree one �like all newly introduced nodes�. The
solution is then

ki =� t

ti
. �7�

It follows from �7� that the probability that ki is larger than k,
is

��k� 	 Pr�ki � k� = Pr
ti �
t

k2� . �8�

However, since node i could be introduced in any of the t
steps with equal probability, the probability that ti�T is T / t,
so that ��k�=1/k2. The degree distribution for large k then
follows:

Pa�k� = −
d

dk
��k� � k−3. �9�

We conclude that the random sequential construction of the
tree by method �a� leads to a scale-free degree distribution of
degree exponent �=3, different from �=1+ln 3/ ln 2 of the
deterministic tree.

But what if we select the links by method �b�? In this case
node i may be the first of the two nodes to be selected in step
t. This may happen with probability 1 /N�t�. Node i may also
be the second node selected. The probability that we reach i
through a randomly selected node is ki /Nk�. The degree of
node i increases from ki to ki+1 regardless of whether it is
picked first or second. That is, the rate of increase is �1/N�
��1+ki / k��. But N�t�=2t, while k�=2M /N= �4t−2� / �2t�
→2, as t→�. It follows that in the long time asymptotic
limit:

dki

dt
=

1

2t

1 +

ki

2
� . �10�

From here we proceed exactly as for method �a�, this time
obtaining

Pb�k� � k−5, �11�

for large k. Once again the degree distribution is scale-free.
The degree exponent �=5 is not only different from that of
the deterministic tree but also differs from �=3 obtained by
method �a�.

FIG. 1. Synchronous recursive scale-free tree and methods of
construction. �a� Generations n=0,1 ,2 ,3 of the tree. �b� First
method of construction: to each of the endpoints of every link in
generation n we connect a node of degree one. �c� Second method:
to each node of degree k in generation n we add k new nodes of
degree one. �d� Third method: to obtain generation n+1, we join
three copies of generation n at the hubs �the nodes of highest
degree�.
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In Fig. 2 we show the degree distribution of random se-
quential trees constructed by the two methods. The simula-
tion data are consistent with the degree exponents predicted
above, although one could argue that larger simulations are
needed for the distributions to converge to their long time
asymptotic limit �19�. At any rate, the simulations demon-
strate our point that a bias in the selection of the updated
units is responsible for the differences between different
kinds of random sequential nets, and between random se-
quential nets and synchronous nets. The differences from the
deterministic tree, in our case, result from the fact that pick-
ing links at random �by either of the two methods considered
here� favors links with endpoints of higher degrees.

A third method for building the random sequential tree is
based on the recursive technique of Fig. 1�c�, where at each
iteration the degree of all existing nodes is doubled by at-
taching to them new nodes of degree one. In the random
sequential version the degree of only one randomly selected
node is doubled at each time step. The node to be updated is
picked with equal probability from among the N�t� nodes of
the net. We now show that a random net constructed by this
method achieves the same degree exponent as the determin-
istic net.

We cannot resort to the same technique employed for the
previous two random sequential constructs because now ki
→2ki in a single step, and the increase is too large to allow
for a continuous approximation �we are trying to study ki
large�. Instead, we resort to discrete rate equations.

The degrees in the random tree are powers of 2, just as in
the deterministic tree. Let Nt�m� be the number of nodes of
degree 2m at time t, and let Nt=�mNt�m� be the order of the
tree, then

Nt+1�m� = Nt�m� +
Nt�m − 1�

Nt
−

Nt�m�
Nt

, m � 1,

Nt+1�0� = Nt�0� −
Nt�0�

Nt
+ �

m=0
2mNt�m�

Nt
. �12�

The long time asymptotic limit can be obtained by making
the ansatz: Nt�m�→bmt and Nt→Bt, as t→� �B=�mbm�.

Substituting in the first of Eqs. �12�, we learn that bm
=bm−1 / �1+B�, leading to bm=b0 / �1+B�m. The second equa-
tion tells us that B=2, and the remaining b0 is obtained from
the constraint �mbm=B. We get

Nt�m� →
4

3m+1 t . �13�

This is essentially the same distribution as �5�, corresponding
to �=1+ln 3/ ln 2. This shows that there exist ways of
choosing the units to be updated such that the differences
between random sequential nets and deterministic nets are
minimal.

An interesting question concerns the differences between
the deterministic and random scale-free nets, even when the
random construction is unbiased. It is evident, from our last
example, that differences do exist. For instance, in the deter-
ministic tree there are exactly two hubs �the highest degree
nodes�, always connected to one another. This need not be
the case in the corresponding random tree. More generally,
let Mn�k , l� be the number of links with endpoints of degree
2k, 2l for generation n of the deterministic tree. Then

Mn�k,l� = Mn−1�k − 1,l − 1�, 0 � k 	 l ,

Mn�0,l� = 2l−1Nn−1�l − 1� , �14�

leading to

Mn�k,l� = �2l−k3n−l−1, k � l � n ,

2n−k, k 	 l = n .
� �15�

This can be compared to Mt�k , l� of random trees of an
equivalent size �Fig. 3�. The differences seem to be trivial,
leaving us with the question of whether significant discrep-
ancies show, with respect to any other measure of structure.
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comparison.
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size of the symbols.
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APPENDIX A: ON PICKING A RANDOM LINK

How does one pick a link at random? We focus on the
following two methods: �a� Select a link at random from
among all the links in the network, with equal probabilities,
or �b� select a node at random, then select a neighbor of that
node at random, and pick the link connecting the two nodes.
The two methods select specific links with generically differ-
ent probabilities.

Consider a particular link, in a graph of order N and size
M, whose endpoints are nodes of degree k1 and k2. In method
�a� each of the M links in the graph is selected with equal
probability, so the link under consideration is selected with
probability

plink =
1

M
. �A1�

In method �b�, the probability to pick the node of degree k1
first, is 1 /N. Then the probability that the right neighbor is

selected, is 1 /k1. Likewise, the probability to select the node
of degree k2 first is 1 /N, and the remaining node is selected
with probability 1 /k2. It follows that the probability to hit
upon the specified link by random selection of the nodes at
its endpoints is

pnodes =
1

N

 1

k1
+

1

k2
� . �A2�

Since 2M /N= k�, the average degree of nodes in the graph,
it follows that

plink

pnodes
=

k�
2

 1

k1
+

1

k2
� . �A3�

Note that this relation is valid for all connected graphs, re-
gardless of structural details. An example relevant to our
paper is a tree graph, where M =N−1, and k��2 if the tree
is large. In this case we deduce from �A3� that only links
with k1=k2=2 are equally likely to be picked by either
method. Method �b� favors links with min�k1 ,k2��2. All the
tree leaves �links leading to a node of degree one� are se-
lected more frequently by method �a�.
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